AD-A114 084

NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/8 8/10
CHEMICAL, BIOLOGICAL, AND PHYSICAL MEASUREMENTS FROM THE MEDITE--ETC(U)
UNCLASSIFIED NORDA-TN-138

ML

JOST
G

END
INTERNATION

EN

NORDA Technical Note 136

Maval Besen Research

Bevelopment Activity

NSTI Segion, Minimized, 3952

Chemical, Biological, and Physical Measurements from the Mediterranean Sea, Summer 1980

AD A114084

E FILE COPY

Water and the proper of the proper of the property of the prop

D.M. Lavoie I.P. DePalma D.F. Reid J.D. Hayes

Oceanography Division
Ocean Science and Technology Laboratory

January 1982

EXECUTIVE SUMMARY

This report is a summary of data collected in the Mediterranean Sea during the late summer of 1980. Vertical profiles through most of the water column were obtained for the following parameters: conductivity, temperature, salinity, nephelometry, total suspended matter, dissolved and particulate organic carbon, adenosine triphosphate (ATP), chlorophyll and phaeopigments, nutrients (nitrate, ammonium, phosphate, silicate), dissolved oxygen and dissolved reduced gases (methane, hydrogen, nitrous oxide). Results are presented as: (1) tables of measured and derived parameters; (2) depth profiles of unnormalized values, normalized values, and normalized rates of change. Descriptions of the collection and analytical procedures are also given.

Approved for public release;
Distribution Unlimited

Introduction

This technical note constitutes the final data set for the second cruise of a NORDA Code 334 (Biological and Chemical Oceanography Branch) program undertaken in conjunction with elements of Texas A&M University to study the relationship between near-surface nepheloid (suspended particle) layers and dissolved reduced gases in the open ocean. The cruise was conducted as part of the first phase of the field program, during which we sought to (1) examine several oceanic regions to determine the generality of the occurrence of concentration maxima for the reduced gases methane (CH4), hydrogen (H2), and nitrous oxide (N2O) in the oxygenated, near-surface layers of the open ocean; and (2) examine a wide range of physical, chemical, and biological parameters in an effort to establish relationships with the gas distributions. The ultimate goal is to identify the in situ sources and sinks for these gases in oceanic near-surface waters.

The data are summarized in tables of the measured and derived parameters for each hydrostation. The tables are followed by depth profiles of three different treatments of the data for selected parameters. Collection and analytical procedures are detailed in the Appendix.

Cruise Description

The program was conducted aboard the USNS BARTLETT, Cruise 1309-80, which departed Naples, Italy, on 26 August 1980 and terminated at Rota, Spain, on 15 September 1980. Between 28 August and 13 September, ten stations were successfully completed within the Mediterranean Sea and one was completed just outside the Straits of Gibraltar (see Fig. 1). Cruise participants and their collection and/or analytical responsibilities are listed in Appendix A.

Station Protocol

In general, stations were taken during darkness since daylight interferes with the nephelometer sensor. The sampling package consisted of a CTD probe (Conductivity/Temperature/Depth, Neil Brown Instr., Cataumet, MA) co-mounted on a large frame with a Nephelometer (SeaMarTek, Seattle, WA) and with twelve 30 liter PVC Niskin bottles which were tripped using an electronically controlled Rosette Sampler (frame, Niskin bottles, and rosette sampler by General Oceanics, Miami, FL). The package, standing about 2 m high and weighing almost 900 kg upon retrieval, was lowered on a single conductor, armored cable from the stern U-frame. During lowering, vertical profiles of conductivity, temperature, and nephelometry vs. depth were continuously plotted on X-Y plotters. Based on the profiles, sampling depths were chosen, the Niskin bottles raised to each desired sample depth and tripped while maintaining a slow upward motion to minimize the probability of contamination. Once on deck, water samples were drawn from the Niskin bottles as appropriate to the lability of the parameters being measured, with gas samples being drawn first. To provide profile detail in the shallow zone, the most intense sampling was done in the upper 120 m or so; one entire cast of 12 bottles would be tripped in this region. A second cast of 12 bottles, and occasionally a third, covered the remainder of the water column. Only the first 24 bottles are tabulated here.

The following parameters were measured or calculated on board: conductivity, in situ temperature and pressure (all from the CTD), depth, CTD

Figure 1. Cruise track, USNS BARTLETT, Cruise 1309-80

salinity, Niskin sample salinity, nephelometry (light scattering at 90°), and nutrients $(N02^-, N03^\pm, NH4^+, P04^\pm, Si(0H)4)$, and the dissolved gases 02, CH4, N20, H2. The following parameters were measured or calculated from samples or data brought back to the laboratory: potential temperature, sigma t, total suspended matter (TSM), dissolved and particulate organic carbon (DOC AND POC) chlorophyll and phaeopigment (chlorophyll degradation product), and adenosine triphosphate (ATP, a measure of living biomass). Special collection procedures as well as the essential elements of the analytical methods may be found in Appendix B.

Data Tables

The data for the first 24 depths are tabulated for each station. The following comments apply:

- 1. Where a blank appears, no measurements were taken; where a zero appears, the parameter was below detectable limits.
- 2. Nutrient, CH4 and N2O data were supplied by Dr. James Brooks, Texas A&M University; Drs. Mary Scranton, SUNY at Stony Brook, and Mark Jones, NRL, supplied the H2 data (Scranton and Jones, submitted). Their permission to include their data here is gratefully acknowledged.
- 3. The CTD salinity and the Bottle Salinity (i.e., that measured from Niskin bottle sample on board) do not often agree exactly, even though the CTD sensors had been precisely calibrated just prior to the cruise and the CTD salinity was calculated from digital data recorded while the bottle was being tripped (a process requiring some 30 seconds). The discrepancy can be mostly accounted for by three factors: (1) that the CTD sensors and the Niskin bottles were separated on the frame by approximately 1 meter; (2) that this separation was probably significant in terms of the scales of conductivity and temperature fine structure seen in the continuous CTD profiles; (3) that the CTD data were recorded in the turbulent wake of the large, ascending package.
- 4. TSM samples were collected in a separate cast from the chemical data at sampling depths chosen on the basis of the continuous nephelometry trace. Thus, the TSM sample depths did not always correspond to the chemistry sample depths. In the tables, TSM values have been placed at the closest chemistry sample depths, and in most cases, they are within a few meters of their actual depths.

5. Table Legend:

Depth: (meters) calculated from CTD pressure reading (from Saunders,
1981);

In Situ Temp: (degrees Celsius) Temperature from CTD reading;

<u>Poten Temp</u>: (degrees Celsius) Potential temperature calculated from CTD pressure and temperature readings (Bryden, 1973);

CTD Salin: (parts per thousand) Salinity calculated from CTD readings; using the Bennett-Dauphinee algorithm (Mayoral, 1979)

<u>Bottle Salin</u>: (Parts per thousand) Salinity of Niskin sample; measured with a Guildline Autosal.

```
<u>Sigma T</u>: ((density - 1) \times 10^3) Density anomaly using CTD salinity
and temperature (Millero et al., 1980):
TSM: (µg/liter of sea water) Total Suspended Matter (gravimetric);
<u>Nephels</u>; arbitrary units of nephelometry (scattering at 90° by
suspended particles);
CH(4): (n1/L) Dissolved methane;
H(2): (n1/L) Dissolved hydrogen;
N(2)0: (n1/L) Dissolved nitrous oxide;
0(2): (ml/L) Dissolved oxygen;
POC: (µg Carbon/L) Particulate organic carbon;
DOC: (μg Carbon/L) Dissolved organic carbon;
Total Chloro: (µg/L) Total chlorophyll "a" (chl "a");
Total Phaeo: (µg/L) Total phaeopigment (i.e. chlorophyll degradation
products);
<20 um Chloro: (μg/L) Chlorophyll "a" of particles less than 20 μm;</p>
<20 um Phaeo: (μg/L) Phaeopigment of particles less than 20 um:</p>
>20 um Chloro: (\mu g/L) Chl "a" of particles larger than 20 um;
>20 um Phaeo: (\mug/L) Phaeopigment of particles greater than 20 \mum;
Total ATP: (ng/L) ATP of particles from 200 to 0.2 µm diameter;
Micro ATP: (ng/L) ATP of particles 200 to 20 µm diameter;
Nano ATP: (ng/L) ATP of particles 20 to 2 µm diameter;
Pico ATP: (ng/L) ATP of particles 2 to 0.2 µm diameter;
NO(3): (µg-atoms/L = µM) Nitrate;
NO(2): (µg-atoms/L = µM) Nitrate;
NH(4): (\mu g-atoms/L = \mu M) Ammonium;
PO(4): (µg-atoms/L = µM) Orthophosphate;
SiO(4): (\mu g-atoms/L = \mu M) Silicate;
```

Depth Profiles

As an aid to perceiving relationships among the data, depth profiles are presented for the twelve most important parameters: temperature, salinity, sigma t, chlorophyll "a", micro and nano ATP, methane, hydrogen, nitrous oxide, nephelometry (or TSM), particulate organic carbon, and dissolved oxygen. All the profiles have the same depth scale -- 0 to 200 m -- and the parameters are arranged to facilitate intercomparison at each depth. The upper dashed line in most of the profiles marks the approximate bottom of the mixed layer or top of the pycnocline; the lower dashed line in stations 3, 6, 8, and 12 marks the approximate 1% light level. There are three types of profiles, each presenting a different aspect of the data:

- A. <u>Straight Data</u>. Useful for comparing magnitudes of the parameters from station to station. Parameters and their units are as in the Table Legend.
- B. <u>Values as % of Maximum</u>. Each parameter is normalized to its maximum value in the upper 200 m for each station. These plots allow immediate identification of the depth of maximum value and facilitate comparisons among the parameters.
- C. Average Gradient, Normalized to Maximum. The change per meter was determined between two succeeding depths, was normalized to the maximum rate of change in the upper 200 m, and the normalized value was plotted halfway between the depths. The gradient scale runs from -1 (maximum rate of decrease) through 0 (no change) to +1 (maximum rate of increase). (It should be noted that, since the data set consists of discrete values only, one cannot interpolate gradient values between points on this plot, only the gradient sign). These plots facilitate interparameter comparisons of gradient with depth.

NTIS DTIC Uname	GRA&I TAB ourced	000
By Distr	ibution	./
Avai	labilit	y Codes
Dist	Avail (•
	NTIS DTIC Uname Justi By Distr	DTIC TAB Unanounced Justification By Distribution Availabilit Avail

blank

DATA TABLES
USNS BARTLETT 1309-80

STATIONS 2 THROUGH 12

BARTLETT 1309-80 Stn 2

	200	(1/26n)		657	653	807	538	609	5.54	654	976	5.54	452	527				618	477	474	402		412		386	358
•	8	(m1/L) - (ugC/L)		21	21	25	21	14	15	52	7	54	19	17			,	10	10	80	9	•		9	w	
	0(2)	(m1/L) -																								
	N(2)0	(n1/L)																								
	н(2)	(n1/L)	23	36	18	12	7	11	9	9•	•	S	S.	S	4	S	10	7	16	10	σ	9	10	S.	14	15
3 50 0m	CH(4)	(n1/L)													•											
BOTTOM DEPTH: 3500m	Nephels	(ug/L) (arbit)			•				1603	27 33	2559	2549	2356	2072		1689	1423	1264	1291	1369	1289	1272	1316	1266	1234	1174
<u> </u>									_		_		_										. ~			_
BOTT	TSW	(ng/F)	28	44		59	108		74		8		133			78			52				15			20
	Sigma TSM	(n8/E)	25.97	26.00 44				27.88		29.46				23.83	28.32		28.93			29.03	29.05	29.07		29.09	9.10	29.11 20
37.04N;18.35E		- ا ا	25.97	26.00	26.43	27.43	27.72		23.17		29.62	28.71	28.76			28.89		28.98	28.99				29.08	29.0	29.10	29.11
37.04N;18.35E	S igma) (0/00)	38.709 25.97	26.00	38.572 26.43	38.502 27.43	38.589 27.72	33.524	33.570 23.17	29.46	38,593 24,62	38.541 28.71	38.709 28.76	38.704	38.571	38.673 28.89	38.739	38,809 28,98	38.843 28.99	39.918	33,923	38.931.	38.920 29.08	38.897 29.0	38.903 29.10	38.861 29.11
POSITION: 37.04N;18.35E	CTD Bottle Sigma	44 C) (0/00) (0/00)	557 38.695 38.709 25.97	5.485 38.707 38.563 26.00	3.463 33.618 38.572 26.43	0.226 38.558 38.502 27.43	214 38.599 38.589 27.72	731 33.649 33.524	170 38.506 38.570 28.17	6.099 38.548 38.572 28.46	5.468 38.559 38.593 24.62	5.210 38.600 38.541 28.71	030 38.630 38.709 28.76	4.930 38.690 38.704	4.850 38.642 38.571	.563 38.549 38.673 28.89	504 38.710 38.739	.695 38.802 38.809 28.98	.704 38.823 38.843 28.99	38,902 38,918	4.733 38.911 33.923	33.901 38.931.	38.873 38.920 29.08	83 38.859 38.897 29.0	.295 38.843 38.903 29.10	7 38.797 38.861 29.11
37.04N;18.35E	InSitu CTD Bottle Sigma	eg C) (644 C) (0/00) (0/00)	5.557 25.557 38.695 38.709 25.97	32 25.485 38.707 38.563 26.00	3.858 23.863 38.618 38.572 26.43	0.220 20.226 38.558 38.502 27.43	9.206 19.214 38.599 38.589 27.72·	72 13.731 33.649 33.524	7.159 17.170 38.506 38.570 28.17	5.037 16.099 38.548 38.572 29.46	5.455 15.468 38.559 38.593 24.62	5.196 15.210 38.600 38.641 28.71	5.074 15.030 38.630 38.709 28.76	4.962 14.980 38.690 38.704	4.832 14.850 38.642 38.571	12 14.563 38.549 38.673 28.89	4.579 14.604 38.710 38.739	4.668 14.695 38.802 38.309 28.98	4.673 14.704 38.823 38.843 28.99	4.780 14.819 38.902 38.918	16 14.733 38.911 33.923	4.573 14.627 33.901 38.931.	23 14.435 38.873 38.920 29.08	4 14.383 38.859 38.897 29.0	19 14.295 38.843 38.903 29.10	14.077 38.797 38.861 29.11

DB-6DEI BHRTLETT П Z ト い

BARTLETF 1309-80 Stn 2

DATE:	3: 9/28/30		POSITION:	37.04%	4N;18.35E	MOTICE	DEPTH:	3500m							
DEPLH	Total	Total	< 20um	<20um	>20um	>20um	Total	Micro	Nano	Pico Arp	(£)CN	NO(2)	JH (4)	PO(4))cis
e E	1/6n	7/6n	1/6n	1/6n	1/6n	ng/L	ng/L	n3/E	ng/L		(ugA/k)	(ugA/L)	(ugA/L)	(ugA/L)	(ug4/I
7	0.016	0.061			! ! ! !		6.57	2.05	2.09	2.43	09.0	0.16	1.0	0.33	2.5
11	0.022	0.005					25.70	14.57	3.04	3.00	0.55	0.16	1.0	0.33	2.8
20	0.023	0.005					11.92	3.54	3.52	4:36	0.55	0.15	1.0	0.36	۳ ۳
30	0.023	0.005		•			9.20	3.18	3.44	2.58	0.53	0.16	1.0	0.40	7
39	0.034	0.013		•			11.39			2.15	09.0	0.15	1.0	0.33	2.8
49	0.056	0.003					9.73	6.33	1.70	1.70	09.0	0.16	1.0	0.33	m
29	0.074	0.003					8.32	1.00	3.90	3.41	0.60	0.16	1.0	0.40	7.
89	0.083	0.016					10.15	2.94	3.75	3.47	0.60	0.16	1.0	0.40	7
79	0.129	0.015					14.39	5.51	3.19	5.68	0.60	0.16	1.1	0.43	m
8 0	0.119	0.027					16.69	8.63	2.55	5.51	0.55	0.14	1.0	0.45	'n.
98	9.176	0.026					9.37	2.57	2.97	4.44	0.60	0.15	1.0	0.45	m
109	0.057	0.031					5.19	0.64	1.17	2.78	0.55	0.15	1.0	6. 38	7
115	9.103	0.033					15.00	10.33	2.23	1.89	0.60	0.18	1.1	0.45	~ ~
136	0.044	0.075						13.64	1.37		1.36	0.18	1.1	0.43	m m
726	0.014	0.054					4.33	3.06	0.59	0.58	1.91	0.17	6.0	0.33	, M
169	0.012	0.014					12.15	11.00	0.60	0.55	2.18	0.17	6.0	0.33	m
194	0.004	0.00					6.07	4.31	0.17	0.49	2.51	0.16	6.0	0.38	;
244	0.001	0.003					1.14	0.22	0.53	0.39	3.11	0.15	6.0	0.33	4.
291	0.001	0.003					0.82	0.14	0.33	0.39	3.11	.0.18	6.0	0.33	'n
340		0.003					2.30	0.38	1.17	0.76	3.33	0.18	1.0	0.33	'n
390		0.002					0.99	0.38	0.38	0.22	3.37	0.17	1.0	0.33	
439		0.003					2.36	0.36	1.16	8.0	4.15	0.17	1.0	0.33	
486		0.002					1.31	0.05	0.63	0.63	4.42	0.16	1.0	0.40	9
28 €		0.001					1.37	0.00	9.0	0.74	4.85	0.16	٥.٢	0.40	9

BHRTLETT I 309-80 NTZ

BARILETE 1309-80 Stn 3

	CCO	(n3C/T)	479	4	51.	29,	47	410	402	595	3	67	57	47.6	43	43.	43	336	38.	35.	356	32	36
•	204	(m1/L) (ugC/L)	21		14	17	20	14	21	97	12	11	7	7	7	Φ	7	œ	-	4	4	m	m
	0(2)	(m1/L)																					
	N(2)0	(n1/L)	171	171	181	245	283	2 2 5	235	197	233	212	231	244	227	211	232	256	241	233	255	2 48	256
	H (2)	(n1/L)	22	23	24	16	12	15	11	14	15	21	17	17	10	14	11	6	œ	O)	10	6	2
2523m	Cit (4)	(n1/t)	52	50	50	31	73	79	84	5	65	65	65	61	09	90	58	63	67	75	63	61	53
BOLFO4 DSPF4: 2523m	Nephels	(ug/L) (arbit)									2053	2103	1957	1810	1763	1624	1373	1349	1301	1209	1156	1130	1112
2		_	! ~		m		69		~		፫		23		29			18			21		
80F	FSH	1/6n)	09		25.		9		121		•••		• •		•			_			7		
	Signa rsw	7/6n) .	<u>{</u> -	25.90		27.23		27.95		23.51	28.62	23.73		29,32		23.91	28.95		29.00	29.02		29.08	29.10
34.67N;21.03E	Bottle Signa	(0/00)	25.38	38.699 25.90	25.35		27.59		28.24				23.79		28.33			29.97			29.05		38.888 29.10
34.67N;21.03E	CTD Bottle Signa	(0/00) (0/00) (0/00)	33.592 25.38	38.699	38.502 25.95	37.585	37.300 27.59	38.212	38.252 28.24	38.511	33.673	38.740	38,788 23,79	33,759	38.795 28.33	38,835	38.385	38.882 28.97	38.892	38.122	38,932 29,05	38,922	
POSITIOM: 34.67N;21.03E	CTD Bottle Signa	(0/00) (0/00) (0/00)	25.308 38.675 30.592 25.38	38.699	33,674 38,502 25,95	37,655 37,585	37,873 37,300 27,69	38,234 38,212	38,207 38,252 28,24	38,480 38,511	38,507 33,573	38.724 38.740	38,766 33,783 23,79	38.754 38.759	38.805 38.795 28.33	38.326 38.835	38.847 38.885	38.873 38.882 29.97	38.889 38.892	38.913 38.722	38.924 38.932 29.05	38,922	38.880 38.888
34.67N;21.03E	Insitu cro Bottle Signa	Teny Temp Salin Salin C eg C) (deg C) (0/00) (0/00)	25.308 38.675 30.592 25.38	33,685 33,699	25,566 33,674 38,502 25,95	18,123 37,655 37,585	17.133 37.873 37.900 27.59	17.219 38.234 38.212	15.919 38.207 38.252 28.24	15.664 38.480 39.511	15.638 38.607 38.633	15.537 38.724 38.740	15.414 38.766 33.783 23.79	15.244 38.754 38.759	15,143 38,805 38,795 28,38	15.095 38.826 38.835	14,996 38,847 38,385	14.995 38.873 38.882 28.97	14.913 38.889 38.892	14.391 38.913 38.922	14.738 38.924 38.932 29.05	14.662 33.919 38.922	14.429 38.880 38.888

08-60E BHRTLETT . П Z |-| 切

BARILSTr 1309-80 Stn 3

POSITIOM: 34.67N;21.03E

DATE: 3/29/80

BOTTO1 DEPTH: 2523m

3i3(4)		(ng//r)	2.50	2.40	2.10	2.10	2.40	2.40	2.40	2.93	3.50	3.50	3.20	3.50	3.50	3.50	3.50	3.50	3.80	4.19	4.43	5.00	5.93
PO(4)		(1/VEn)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.27	0.30	0.30	0.33	0.30	0.30	0.33	0.30	0.30	0.27	0.27	0.27	0.27	0.30
NH (4)		(ug4/t)	1.1	1.2	1.2	1.1	1.1	~; ~;	1.1	1.1	1.1	1.1	٦:٦	۳.۳	1.0	1.0	1.1	1.1	1.0	1.1	1.0	7.0	1.1
NO (2)		(ugA/L). (ugA/L)	0.14	0.14	0.13	0.13	0.13	0.14	0.12	0.13	0.14	0.14	0.14	0.18	0.22	0.21	0.21	0.19	0.18	0.18	0.18	0.18	0.20
(£)CN		(ugA/L)	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.59	0.38	1.41	1.82	2.29	2.35	2.71	2.59	3.29	3.53	4.29
P ico	ATP	ng/L	4.30	9.37	4.58	6.48	7.56	7.33	8.24	6.26	5.52	4.59	4.96	3.55	3.16	2.49	2.56	1.37	1.64	1.14	1.14	0.73	0.58
Vano	ALP	n3/L		1.95	5.72	5.02	5.93	5.54	5.92	4.86	3.32	2.88	3,32	2.57	2.55	2.05	2.15	1.54	1.57	0.79	1.30	0.10	0.61
Micro	ATP	1/Eu		24.24	27.40	22.69	10.52	8.95	11.34	17.15	7.05	16.20	0.99	7.32	16.72	11.78	9.92	4.78	11.11	13.37	1.49	0.31	1.60
Total	VIĐ	n3/E	11.30	36.05	37.70	34,17	24.05	21.82	26.10	28.25	15.89	23.65	9.27	13.44	22.53	16.32	14.64	7.68	14.32	15.30	3.93	1.79	2.79
>20um	Phaeo	ng/L																					
>20um	Chloro	1/En	†		•																		
<20um	Phaeo	∏/En	1				•																
< 20um	Chloro	T/En	1 1 1 1 1 1 1																				
Total	Phaeo	n3/F	0.001	0.002	0.004	0.00	0.003	0.024	0.021	0.055	0.037	0.053	0.081	0.083	0.119	0.168	0.067	0.00	0.041	0.011	900.0	0.005	0.003
Total	Chloro	1/En	0.0.0	0.017	0.026	0.030	0.044	0.058	0.046	0.073	0.134	0.149	0.144	0.144	0.091	0.045	0.043	0.020	0.028	0.003	0.00	0.001	0.001
DEPLH		Ē	0	11	19	23	37	4	57	67	16	90	86	105	117	127	133	147	169	197	245	291	389

08-60E1 BHRTLETT E NIS

BARTLETT 1309-80 Stn 4

	200	(7 />6n)	691	324	537	523	635	495	587	746 499	514	5 59	561	919	435	540	349	411	379	415	397	387	309	416	4 00
	POC DOC	(3/26n)	m		15	σ.	7	ω	14	טינס	7	S	σ		9	m	ø	_	'n	4	0	-	7	ત	7
	0(2)	 																							
	N(2)0	(u1/r)	181	199	212	203	234	206	255	22 4 207	230	234	238	221	2 20	202	239	210	239	213	226	221	210	202	2.42
	H(2)	(u7/r)	14	13	16	10	Φ	13	9	8 1	· თ	13	œ	9	23	'n	œ	11	6	70	ස	12	11	7	20
2090	CH (4)	(uT/r)	. 61	53	55	58	90	72	64	258 20	9	28	57	19	65	υ 4	28	23	25	20	18	18	14	14	15
BOTTOM DEPTH:	Nephels	(arbit)	_							23.05	1939	1814	1529	1383	1255	1282	1160	1144	1003	901	945	874	893	998	808
оттов		(ng/L)	4 4		34		47		81	8	15			31	20		26	31	20						
		(nd/r)	25.28 44	25.34	.42 3	25.58	26.96 - 47	27.21	.42	27.58	03	28.10	28.18	.38	.32 2	.07	.11	.12	.12	29.12	29.11	29.10	29.03	29.03	29.09
33.00N;18.00E BOTTO	Signa TSM	(0/00) (nd/r)	23 2 25	329 25	423 25.42 3	123 25	039 26	116. 27	8.056 27.42	ສແ	8.041 28.03 1	8.056 28	8.153 28	8.319 28.38 3	588 28.32 2	8.822 29.07	8.815 29.11	8.756 29.12	715 29.12	728 29	9.684 29	753 29	702 29	60 29	58 29
SITION: 33.00N;18.00E	STD Bottle Signa TSM alin Salin t	(0/00) (0/00) 	38.232 25	38.329 25	38.423 25.42 3	38,123 25	38.039 26	38.116 27	38.056 27.42	8.045 27.58 8.038 27.38	38.041 28.03 1	38.056 28	38.153 28	38,319 28,38 3	38.688 23.32 2	38.822 29.07	38.815 29.11	38.756 29.12	33,715 29.12	38.728 29	38.684 29	38,753 29	38.702 29	38.660 29	38.658 29
POSITION: 33.00N;18.00E	itu CTO Bottle Signa TSM	C) (0/00) (0/00) (m3/r)	695 38.257 38.232 25	634 38.307 38.329 25	634 38.419 38.423 25.42 3	.252 38.185 38.123 25	319 38.161 38.039 26	868 38.153 38.116 27	786 38.063 38.056 27.42	38.045 27.58	127 37.994 38.041 28.03 1	959 38,039 38.056 28	373 38.122 38.153 28	551 33.274 38.319 28.38 3	906 38.653 38.688 23.32 2	317 38.812 38.822 29.07	329 38.758 38.815 29.11	735 38.717 38.756 29.12	646 38.592 33.715 29.12	619 38.679 38.728 29	610 38.665 38.684 29	608 38.650 38.753 29	611 38.642 38.702 29	601 38.638 38.660 29	602 38.638 38.658 29
SITION: 33.00N;18.00E	ten InSitu CTD Bottle Signa TSM	(deg C) (0/00) (0/00) (deg/L)	26.695 38.257 38.232 25	26.634 38.307 38.329 25	26.634 38.419 38.423 25.42 3	25.252 38.185 38.123 25	20.319 38.161 38.039 26	19.868 38.153 38.116 27	18.786 38.063 38.056 27.42	0.00 38.007 38.045 27.58	16.127 37.994 38.041 28.03 1	15,959 38,039 38,056 28	15.373 38.122 38.153 28	15.551 33.274 38.319 28.38 3	14.906 38.658 38.688 28.32 2	14.317 38.812 38.822 29.07	13.929 38.758 38.815 29.11	13.735 38.717 38.756 29.12	13.646 38.692 33.715 29.12	13.619 38.679 38.723 29	13.610 38.665 38.684 29	13.608 38.650 38.753 29	13.611 38.642 38.702 29	13.601 38.638 38.660 29	8 13.602 38.638 38.658 29

08-60E1 BHRTLETT T Z L S

BARTLETF 1309-80 Stn 4

The state of the s

	(F) CIS	(uga/L)	1.90	2.20	2.20	2.20	2.20	2.20	1.90	2.20	2.20	2.20	2.20	2.20	2.50	3.10	5.00	5.60	7.83	3.80	9.40	9.40	10.00	13.30	10.30	13.30
		(ugA/L)	0.35	0.33	0.35	0.33	0.33	0.33	0.33	0.33	0.33	0.31	0.23	0.31	0.31	0.31	0.31	0.31	0.31	0.33	0.33	0.33	0.33	٣.	0.33	m
		(ugA/L)	1.1	1.1	1.1	1.2	1.1	1.3	1:1	1.1	1.2	1.2	1.2	1.3	1.2	1.1	1.0	1.0	1.0	1.1	1.1	1.1	1.3	1.3	1.3	1.3
		(ugA/L)	0.18	0.13	0.19	0.21	0.19	0.22	0.18	0.18	0.18	0.19	0.20	0.22	0.21	0.21	0.17	0.16	0.16	0.16	0.16	0.16	0.14	0.14	0.16	0.18
	(S) CN	(ugA/L)	0	0.56	99.0	99.0	0.72	0.73	0.59	99.0	0.66	0.72	0.72	0.79	1.38	3.16	4.80	5.33	5.59	5.66	5.66	5.53	5.26	5.26	5.26	5.26
		ng/L	10.54	4.60	3.83	5.01	4.91	5.34	4.65	3.61	3.91	4.12		1.42	3.45	2.75								1.10	0.95	17.0
	Nano	ng/E	5.16	5.10	2.69	4.31	4.52	3.94	4.85 28.5	3.78	2.35	1.95		1.16	2.22	1.49								0.30	0.33	0.4
2090	Micro	ng/L	12.72	8.15	18.03	6.25	5.06	4.84	22.20	12.70	5.55	1.59		1.41	0.0	3.36									0.12	
BOLTOM DEPTH:	rotal Are	ng/L	28.42	17.86	24.54	15.58	14.49	14.12	31.70	20.08	12.32	7.66		3.99	5.54	7.60								1.25	1.40	0.95
BOLTON	>20um Phaeo	ug/L	0.000	0.000	0.000	0.003	0.000	0.003	0.008	0.002	0.00															
118.00E	>20um Chloro	ug/L 	0.019	0.003	0.003	0.001	0.004	000.0	0.002	0.000	0.040															
33.00N;1	< 20um Phaco			0.005	0.006	0.008	0.008	0.00	0.010	0.016	0.042															
POS I TIOM:	< 29um Chloro	ug/L	0.00	900.0	0.013	0.026	0.023	0.038	0.025	0.039	0.055															
	Total Phaeo		0.034	0.002	0.002	0.011	0.003	0.012	0.019	0.018	0.042											,				
DATE: 08/31/80	Total	ug/E	0.026	0.010	0.021	0.026	0.032	0.034	0.027	0.027	0.095		•													
DATE		a	1	10	19	28	39	3	28	99	8	97	112	125	143	195	292	487	7 28	974	1155	1456	1842	2038	2075	2085

BHRTLETT 1309-80 N N L

SARILSTr 1309-80 Stn 5

	DOC (7/C)	1 /26-	1007	780	924	837	700	9/9	787	707	179	741	677	076	200	£ 33	499	614	480	527	520	191			722	358
•)Cd	•	15	12	17	12	12	12	7	15	77	12	7 1	٦ -	~ (M	6 .	7	7	S	14	m			60	S
	0(2) (a)/L)	•																								
,	N(2)0	/ <u>;</u> /:	310	258	293	216	240	210	210	270	790	286	268	167	000	310	289	328	290	282	315	272			287	295
	H(2)		6	15	19	2	σ	ø	80	10	-	12	,	2	Λ,	-	'n	ហ	₩	φ	7	7			ហ	→
1265	CB (4)	(2 / 11)	46	63	72	79	83	83	75	80		119	/01	0 ,	40	44	23	25	24	21	24	5 6			21	21
BOTTOM DEPTH:	Nephels		2511	2894	2743	2594	2621	2478	2341	2567	7 63 7	2493	1940	7/67	153/	1856	1879	1817	1754	1746	1766	1784	1668	1922	1836	1844
BOLTO		ì	133			80			45			5	2	ç	χ Υ		5	3		32						45
	TSM (17/01)	6	_											•	•			•		•						
12.53E	Sigma Tit t	/6p)	26.13 1	26.23	26.31	26.74	26.95	27.22	27.51	27.76	27.94	28.17	28.53			29.08	29.10	29.11	29.10		29.10	29.10	29.09	29.09	29.03	29.09
36.49N;12.53E			26.13			7	~		~	37.579 27.76			38.314 28.53	16.87	29.02		733	176		765 29.10	64		29.09	29.09		38.758 29.09
ITION:	Signa t		7.538 37.549 26.13	7.398 37.428	7.365 37.298	7.252 37.282 2	37.231 2	7.253 37.338	7.356, 37.416 2	7	7.721 37.531	7.843 37.946	8.236 38.314	8.646 38.692 28.91	8.754 38.768 29.02	8.784	8.774 38.733	8.761 38.776	8.748 38.770	8.746 38.765 29.10	8.746 38.764	8.744 38.761	8.735	8,736	8.735 38.763	8.734 38.758
POSITION:	ttu CTD Bottle Sigma	(a/aa) (a/aa)	37.538 37.549 26.13	37.398 37.428	37.365 37.298	37.252 37.282 2	37.272 37.291 2	37.253 37.338	37.356, 37.416 2	37.539 37.579 2	37.721 37.531	37.843 37.946	38.236 38.314	38.646 38.692 28.91	38.754 38.768 29.02	38.784	38.774 38.733	38.761 38.776	38.748 38.770	38.746 38.765 29.10	38.746 38.764	38.744 38.761	38.735	38,736	38.735 38.763	3.971 38.734 38.758
ITION:	ttu CTD Bottle Sigma	(deg .) (0/00) (0/00) 	22.072 37.538 37.549 26.13	21.318 37.398 37.428	20.953 37.365 37.298	19.048 37.252 37.282 2	18.281 37.272 37.291 2	17.109 37.253 37.338	16.245 37.356 37.416 2	7.539 37.579 2	15.574 37.721 37.531	15.014 37.843 37.946	14.732 38.236 38.314	14.4/2 38.646 38.692 28.91	14.374 38.754 38.768 29.02	14.158 38.784	14.043 38.774 38.773	13.974 38.761 38.776	13.941 38.748 38.770	13.951 38.746 38.765 29.10	13.958 38.746 38.764	13.962 38.744 38.761	13.957 38.735	771 13.966 38.736	38.735 38.763	771 13.971 38.734 38.758

08-60E BHRTLETT S NT S

BARTLETF 1309-80 Stn 5

BOTTOM DEPTH: 1265

DATE: 09/02/80 POSITION: 36.49N;12.53E

\$10(4) (ugA/L)	20000000000000000000000000000000000000
PO(4)	
l l	-
(4) NH(4) (2) CN (4) (4) (4) (4) (4) (4) (4)	00000000000000000000000000000000000000
NO(3)	00000000000000000000000000000000000000
Pico ATP ng/L	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nano Arp ng/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Micro ATP ng/L	10.95 23.021 10.95 23.028 33.038 37.338 10.95 10
Total Are ng/L	22423 22423 23424
>20um Phaeo ug/L	000000000000000000000000000000000000000
>20um Chloro ug/L	000000000000000000000000000000000000000
<20um Phaeo ug/L	0.0000000000000000000000000000000000000
<20um Chloro ug/L	00000000000000000000000000000000000000
Total Phaco ug/L	000000000000000000000000000000000000000
Total Chloro ug/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEPTH (#)	1229 1229 1229 1229 1229 1229 1229 1229

BHRTLETT 1309-80 STN S

BARTLETT 1309-80 Stn 6

	D00	(ngC/L)	847	397	521	628	547	592	452	44		450	445	414	380	817	384	347	295	274	273	294	236	228	319	235	
•	P0C	(m1/E) (ugC/E)	14	16	21	23	22	17	29	98°	9 ,	91	. 13	_	ø	7	→	•	m	m	~	~	~	0	-4	7	
	0(2)	(m1/L)																									
٠	N(2)0	(n1/L)	272	269	241	247	223	262	290	311	010	304	338	303	360	334	396	334	331	291	. 303	327	314	336	369	391	•
	H(2)	(n1/L)		7	11	80	ω	10	σ	22°	.	16	18	20	7	4	10	11	11	2	12	σ	10	12	10	9	
3026	CH (4)	(n1/L)	-09	64	72	74	74	85	77	(B)	707	72	74	84	85	62	57	26	46	35	29	28	28	78	24	18	
BOTTOM DEPTH:	Nephels	(ug/L) (arbit)				3085	2723	2316	2640	2783	2933	2230	2211	1745	1557	1482	1 38 3	1390	1136	196	993	930	904	894	956	922	
BOLLO	TSM	(ng/L)																									
39.22N;11.75E	Sigma	u	25.73	25.74	26.03	26.96	27.49	27.99	28.31	28.55	28.62	28.67	28.68	28.76	28.82	28.88	28.93	23.96	29.04	29.00	29.05	29.04	29.02	29.01	28.99	28.99	
39.22N	Bottle	(00/0)	27 933	37.968	37.665	37,563	37.536	37.837.	37.932	38.109	38.154	38.188	38.230	38.317	38,418	38,514	38,586	38,608	38,706	38.571	38.529	38,473	38,478	38.479	38.452	38.468	
POSITION:	cro	(0/00)	37 902	37.931	37.613	37.547	37.571	37,843	37.984	38.077	38.136	33.177	38,199	38.312	38,387	38.498	38.556	39.586	38.692	38.570	38.492	38.443	38.418	38.415	38.406	38.408	
	InSitu	Temp (deg C)	74 400	24.435	22.424	19.056	17.010	15.308	14.365	14.107	13.959	13.901	13,908	13,979	13.975	14.073	14.059	14.036	14.035	13.502	13.252	13,138	13.122	13.172	13.231	13.236	
E: 09/04/80	Poten	Temp (deg C)		24.43	22.420	19.062	17.005	15,301	14.856	14.095	13.946	13.887	13.893	13.963	13.956	14.051	14.033	14.006	13.974	13,383	13.073	12,893	12.819	12.803	12.794	12.792	
DATE:	DEPTH	Œ)		4 0	``	22	30	4.4		0 8	88	94	93	106	121	143	172	195	391	779	1166	1553	1942	2329	2713	2751	

08-60E1 BHRTLETT Ш 区 下 区

	ï
	i
	ï
	ř
	ï
	r
	ï
	i
	ï
S	1
	ï
C	ï
₽	Ä
ťΩ	1
٠.	ä
	r
	ï
	i
	ï
	1
	ï
0	ı
ĝ	Ü
ł	ı
6	H
C	1
m	
~	
24	ı
E٠	H
I LE	
3	ı
4	
3AR	H
Æ,	1
æ	H

BOLTOM DEPTH: 3056

POSITION: 39.22N;11.75E

DATE: 09/04/80

(1/Y6n)	22.22 22.22 22.22 22.22 22.23 23.23 24.23 25.23 26.23
PO(4)	00000000000000000000000000000000000000
NH (4)	
NO(2)	00000000000000000000000000000000000000
NO(3)	000000112444000000000000000000000000000
Pico ATP ng/L	44000004040000000000000000000000000000
Jano ATP ng/L	0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09
licro ATP ng/L	3.442 3.442 3.253 3.253 5.963 1.2.95 0.08
Total ArP ng/L	22.25 10.22 10.22 10.22 10.22 10.22 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.33
>20um Phaeo ug/L	00000 00000 000000 0000000
>20um Chloro ug/L	000000000000000000000000000000000000000
<20um Phaeo ug/L	0.0337 0.0337 0.2128 0.195 0.195 0.093
<20um Chloro ug/L	0.117 0.363 0.363 0.172 0.038
Total Phaeo ug/L	0.00 0.015 0.035 0.177 0.177
Total Chloro ug/L	0.108 0.130 0.678 0.142 0.102
(m)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Ш

08-60E I

BHRTLETT

N L S

17

BATLETf 1309-30 Stn 7

	000	(ng2/E)	958	1534	845	903	744	740	730		619	783	267	1355	584	795	741	493	862	577	256	426	470	635	€83	366
•	POC	(1/26n)	21	23	17	17	13	14	16	7	G,	7	m	∞	₩	٣	0	00	S	œ		10	•	ø	7	▼
	0(2)	(m1/L)	-																							
	N(2)0	(n1/L)		330	159	167	202	198	272	263	209	320	352	334	360	345	355	323	358	352	352	360	386	419	4 28	410
	H(2)	(n1/L)	21	18	7	11	14	c o	'n	11	7	9	7	Ś	4	4	ø	7	18	15	01	7	S	15	ย	ø
2354m	CH (4)	(n1/L)	81	73	59	46	59	62	73	8 8	94	77	83	88	70	46	25	27	29	25	24	37	31	31	33	20
BOTTOM DEPTH:	Ne phe 1s	arbit)	2540	2540	2447	2357	2 28 2	2405	2467	1595	2109	1397	1481	1475	1405	1134	1437	1221	1251	1125	1325	1352	1179	1156	1114	1160
- T	~		_																							
Borros	TSM	(ug/L) (arbit)		55	49	92		155			35		20		29	22	43	21								
		(1/6n)	25.14	5.15 5	5.15 4	0	26.29-	-	27.51	27.94		28.59		28.75					29.05	29.05	29.04	29.04	29.02	29.02	29.01	29.01
37.93M;3.38E	Sigma TSM	(0/c) (nd/r)	37.272 25.14	241 25.15 5	237 25.15 4	241 25.30 9	297 2	125 25.86 1			23.20		28.64		28.85	29.01	29.05	29.05			38.467 29.04		.458	38.457 29.02	.430	135
SILION: 37.93M/3.38E	Sigma TSM	(00/0) (00/0)	37.230 37.272 2	37.241 25.15 5	37.237 25.15 4	37.241 25.30 9	37.297 2	37.056 37.125 25.86 1	37.262 37.312	37.517 37.572	37.598 37.763 23.20	39.039 38.123	38.111 38.149 28.64	38.218 38.253	38,368 33,380 28,85	38.542 38.564 29.01	39.570 33.536 29.05	38.504 38.527 29.05	38.431 38.454	38.419 38.479	38.414 38.467	38.413 38.466	39,400 38,458	38.398 38.457	38,397 38,430	38.397 38.435
POSITION: 37.93N,3.38E	InSitu CID Bottle Sigma TSM	(deg C) (00/0) (3/00)	24.639 37.230 37.272 2	4.531 37.231 37.241 25.15 5	4.637 37.231 37.237 25.15 4	4.153 37.244 37.241 25.30 9	.311 37.470 37.297 2	37.056 37.125 25.86 1	37.262 37.312	37.517 37.572	37.598 37.763 23.20	39.039 38.123	38.111 38.149 28.64	38.218 38.253	38,368 33,380 28,85	38.542 38.564 29.01	39.570 33.536 29.05	38.504 38.527 29.05	38.431 38.454	38.419 38.479	38.414 38.467	38.413 38.466	39,400 38,458	38.398 38.457	38,397 38,430	38.435
SILION: 37.93M/3.38E	InSitu CID Bottle Sigma TSM	(3eg C) (3eg C) (3/00)	3 24.639 37.230 37.272 2	4.531 37.231 37.241 25.15 5	1 24.637 37.231 37.237 25.15 4	3 24.153 37.244 37.241 25.30 9	21.311 37.470 37.297 2	17.983 37.056 37.125 25.86 1	15.904 37.262 37.312	14.903 37.517 37.572	14.339 37.598 37.763 23.20	39.039 38.123	13.317 38.111 38.149 28.64	13.556 38.218 38.253	13.725 38.368 33.380 28.85	13.991 38.542 38.564 29.01	13.536 39.570 38.536 29.05	13.255 38.504 38.527 29.05	13.014 38.431 38.454	13.000 38.419 38.479	12.997 38.414 38.467	12.998 38.413 38.466	13.049 38.400 38.458	13.074 38.398 38.457	13.081 38.397 38.430	13.087 38.397 38.435

1309-BD BHRTLETT 51N 7

SARILSTE 1309-30 Stn 7

BOT'TOM DEPTH: 2354n

BOSITION: 37.93N;8.38E

DATE: 09/05/80

	·
313(4) (ugA/L)	
PO(4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NH (4)	
30(2) (ugA/L)	00000000000000000000000000000000000000
(2) CN	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Pico AFP ng/L	2.309 6.301 7.309 7.309 7.309 7.309 7.70 7.71 7.73 8.63 8.63 8.63 8.73 8.73 8.73 8.73 8.73 8.73 8.73 8.7
Nano Arp ng/L	0.62
Micro Are ng/L	13.24 17.75 10.07 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
Total ATP ng/L	22112222222222222222222222222222222222
>20um Phaeo ug/L	000000000000000000000000000000000000000
2142	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
<20un Phaco ug/L	0.003 0.003 0.003 0.016 0.033 0.033 0.033 0.033 0.033
<20um Chloro ug/L	0.015 0.015 0.013 0.043 0.043 0.062 0.052
Total Pnaeo ug/L	0.005 0.010 0.011 0.013 0.003 0.003 0.0013
Total Chloro ug/L	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
DEPTH (m)	13 13 13 13 13 13 13 13 13 13 13 13 13 1

BARTLETT I 309-80 5 N T 2

BARTLETF 1309-80 Stn 8

	930	(ugc/L)	919	1073	719	850	577	099	538	900	2 9 C	591	377	354	374	320	433	479	249	264	565	352	382	393	25 10 10 10 10 10 10 10 10 10 10 10 10 10	329
	POC	(ml/L) (ugc/L) (ugc/L)	16	11	15	10	10	16	14	15	7	17	70	m	m	S	S	∢		♥	₹	7	~	m	m	'n
	0(2)	(m1/L)	5.23	5,30	•	5,35	•	5.48	•	•	•	•														
	N(2)0	(n1/L)	292	309	304	244	219	225	257	286	232	296	299	295	302	3 0 2	261	272	310	258	263	306	326	307	3 02	, 290
	H(2)	(n1/L)	T 	23	12	16	6	7	9	φ.	4	'n		5	7	9	4	œ	ហ	7	11	6	∞	0	'n	
2606m	Ca(4)	(n1/L)	49	20	69	64	65	9	78	80	60 60	86	89	72	65	65	20	42	44	38	34	28	25	56	58	22
BOTTOM DEPTH:	Nephels	(ug/L) (arbit)											1738	1130	. 1186	1113	1076	1038	196	1001	904	942	362	892	825	786
BOTT (TSH	(ng/E)																								
41.00N;6.49E	Sigma	ر ـ	26.66	26.76	26.77	26.79	26.38	27.13	27.37	27.88	28.27	28.51	28.91	28.92	28.39	28.93	29.02	29.04	9.16	29.06	29.06	29.06	29.05	29.04	29.05	29.01
	Bot tle	(00/00)	38.058	33.127	38,125	38,126	38,146	38.116	38.085	38.018	38.013	39,042	38.149	38.277	38.410	38.229	38.454	38.533	38.534	33.541	38.500	38.479	38.465	38.437	38.455	38.456
POSITION:	CTD	(0/0)	38.037	33.120	38.118	38,033	39,134	38.143	38.074	•	٠.	٠.	٠.	• •	٠.	٠,	٠.	٠.,	_	٠.	33.473	38.442	38.421	38.409	38.401	38.397
	Insitu	(C 6ap)	21.541	21.409	21.394	21,203	21,027	20.125	19.025	17.043	15,337	13.690	13.039	12.963	13.266	13,359	13.230	13.405	13,339	13.273	13,139	13.046	13.017	13.016	13.049	13.108
DATE: 09/07/80	Poten	(S Eab)	21.541	21.405	21.399	21.199	21.022	20.119	19.013	17.036	15.379	13,680			_		13.	13.						12.778		12.740
DAT	DEPTH	(E)		11	17	19	24	29	36	42	47	67	97	150	160	187	219	291	387	487	7 29	974	1263	1553	1943	2328

08-60E | BHRTLETT Z F S

3ARTLETT 1309-80 Stn 8

	(4)CiS		1.93	2.2)	1.93	1.90	1.63	1.9)	1.93	1.63	1.60	1.60	2.50	3.30	4.30	5.40	5.43	6.33	7.00	7.93	8.93	9.20	9.53	9.50	9.83	10.53	
	PO(4)	•	0.31	0.33	0.31	0.23	0.23	0.25	0.23	0.23	0.25	0.23	0.31	0.33	0.36	0.39	0.42	0.4	0.42	0.42	0.42	0.44	0.44	0.47	0.47	0.47	
		•	1.6	1.6	1.4	1.4	1.4	1.3	1.4	1.4	1.4	1.4	1.5	1.4	1.2	1.3	1.3	1.3	1.3	1.4	1.1	1.3	1.3	1.4	1.4	1.5	
	30(2) NII(4)		0.24	0.25	0.19	0.21	0.18	0.18	0.20	0.21	0.23	0.22	0.32	0.24	0.14	0.15	0.16	0.15	0.17	0.17	0.14	0.14	0.14	0.14	0.14	0.14	
	(3) (3) (ng A/L)		0.64	0.64	0.58	9.0	0.64	0.64	17.0	17.0	0.77	0.77	3.01	5.17	66.9	7.76	7.44	8.33	8.59	8.97	9.23	9.30	9.30	9.42	8.97	9.36	
	Pico ATP ng/L		4.23	6.19	5.84	6.72	6.16	5.38	5.34	5.00	3.61	3.24	2.33	1.27	0.93	0.80	4.12	1.29	6.39	4.73	1.15	1.92	0.55	4.62	1.54	6.98	
	Nano ATP ng/L		4.22	3.36	2.82	3.10	2.90	3.74	2.91	3.59	2.84	3.27	1.89	1.12				0.35				0.29					
2605m	Micro Are		1.12	3.50	5.59	4.08	1.44	1.98	4.08	4.23	3.24	1.38	1.90	0.58				0.36				1.35					
SOFFON DEPTH:	Total AFP		9.57	13.66	14.26	13.89	10.50	11.10	12.33	12.99	9.68	7.90	6.13	2.97	5.39	2.04	6.04	2.50	7.66	6.27	1.92	3.56	0.79	5.02	2.64	7.30	
BOTEO	>20um Phaeo		0.001											0.002													
N;6.49E	>20um Chloro		000.0	0.012	0.016-	0.001	0.000	0.004	0.032	0.000	0.030	0.015	0.008	00000													
41.00N	<20um Phaeo		0.004	0.005	0.004	900.0	0.004	0.011	0.021	0.030	0.034	0.075	0.074	0.011													
POSITIOM:	<29um Chloro		0.027	0.018	0.017	0.026	0.037	0.036	0.048	0.060	0.055	0.087	0.010	0.008													
	Total Phaco		0.005	0.005	0.004	0.010	0.003	0.013	0.026	0.029	0.032	0.108	0.092	0.013													
DATE: 09/07/90	Total Chloro	[]	0.007	0.030	0.034	0.027	0.022	0.040	0.081	0.043	0.085	0.102	0.079	0.008													
DAT	HIGAG		~	11	11	13	24	29	36	42	47	67	97	150	160	187	213	291	387	487	7 29	974	1263	1553	1943	2328	

08-60E

BHRTLETT

Z L U

21

DAKELETT 1309-80 Stn 9

BOTTOM DEPTH: 2600m

POSITION: 38.33N;4.99E

DAFE: 09/09/80

200	(ngc/L)	478	535	470	528	473	506	704	612	571	359	399	352	348	299	359	416	710	642	415	588	381	496	503	371
POC	(ngC/T)	20	20	15	21	20	25	18	18	15	15	14	24	9	m	٣	m	\$	9		2	2	7	70	12
0(2)	(m1/L)	5.01	4.98	5.02	5.01	5.25	5.85	6.07	6.20	6.05	5.81	5.49	5.40	4.93	4.26	4.15	4.26	4.33	4.42	4.52	4.61	4.63	4.61	4.58	4.59
N(2)0	(n1/L)	290	259	270	315	310	302	284	325	325	310	302	298	274	323	310	297	276	310	306	370	346	341	258	274
H(2)	(n1/t)	27	22	21	17	13	Þ	φ	4	9	O)	o	7	14	9	31	30	S	20	o,	7	10	70	90	11
CH (4)	(n1/L)	50	56	26	58	64	79	85	81	91	92	9 0 8	83	82	55	53	44	34	29	22	26	28	27	24	28
Nepnels	(arbit)	-												933	819	870	005	693	766	802	788	663	651	697	619
TSM.	(ng/r)	:	106			54		47			95	52	57	18	13		19		19	21		22			
Sigma	,	25.42	25.44	25.48	25.49	25.50	26.05	26.45	27.17	27.51	28.06	24.33	28.53	28.07	28.34	28.94	29.02	29.05	29.05	29.04	29.04	29.03	29.01	29.00	28.99
Bottle	(0/00)	37.446	37.496	37.552	37.567	37.532	37.312	37.326	37,349	37.295	37.070	37.670	38.016	33.259	34.458	34.564	34.529	38.503	34.495	38.461	38.452	34.451	38.443	38.453	38.462
CILD	(00/00)	37.441	37.464	37.548	37.557	37.509	37.377	37.319	37.371	37.244	37.053	37.7.7	37.992	38.055	38.214	38.451	38.520	38.490	36.453	38.426	38.412	38.395	38.366	34.383	38.377
Insitu	(aey C)	24.254	24.238	24.314	24.324	24.302	21.934	18.796	17.697	15.853	14.032	14.056	13.638	13.431	13, 252	13.436	13.504	13.208	13.137	13.061	13.012	13.010	13.048	13.088	13.109
e o	5	1.253	. 236	.310	. 320	. 297	927	3.748	7.688	5.443	4.420	14.041	3.020	204.5	3.223	3.392	3.445	3.140	3.024	2.875	2.435	12.775	2.746	2.737	2.737
Poten Teno	(deg C)	24	24	24	24	24	7	ã	-		-	Ä	-	-	-	-	-	_	-	_	-	-	-	4	4

1309-BD

BHRTLETT

Z ⊢ IJ

22

3ARTEST 1309-80 Stn 9

The second secon

	313(4) (ugA/E)	86000000000000000000000000000000000000
	PO(4)	00000000000000000000000000000000000000
	мп (4) (цдА/L)	
	NO(2)	00000000000000000000000000000000000000
	(13) (3) (nga/L)	O O O O O O O O O U U U U U U U U U U U
	Pico Are ng/L	40 C C C C C C C C C C C C C C C C C C C
	Nano NEP ng/L	0.51 0.51 0.51 0.52 0.53 0.53 0.53 0.53 0.53
2600m	Micro ATP ng/L	0.00 0.01 0.03 0.03 0.03 0.00 0.00
вотточ рерти: 2600m	Total Afe ng/L	16.96 16.96 16.42 14.22 13.93 13.93 112.07 12.07 12.03 13.38 11.38 11.38 11.38 11.38
POTTCE	>20um Phaeo ug/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1;4.99E	>20um Chloro ug/L	0.004 0.003 0.003 0.002 0.002 0.003 0.004 0.004
38, 33:1	<20um Phaes ug/L	0.005 0.005
POSITIOM:	<20um Chloro ug/L	0.006 0.013 0.013 0.034 0.034 0.132 0.102
	Total Phaco ug/L	0.004 0.003 0.003 0.003 0.003 0.004 0.005 0.005 0.005 0.005
DATE: 09/09/80	Fotal Chloro ug/L	0.010 0.013 0.013 0.023 0.032 0.047 0.100 0.100 0.100
DATE	(w)	25 10 10 10 10 10 22 23 10 23 11 10 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 23 23 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25

BHRTLETT 1309-80

П

Z |-|5

BARILETI 1309-80 Stn 10

BOTTOM DEPTH: 2570m

WIG.00;NE6.98 :NCITIECS

DATE: 09/13/30

200	(ugC/L)	631	590	642	617	6 6 6	6 38	712	6.05 7.42	484	418	649	065	369	429	331	299	423	374	473	333	347	644	352
P3C	(49C/L)	23	30	24	30	27	41	21	200	26	6	12	01	6	80	ო	11	ဗ	σ	σ	.	φ	10	17
0(2)	(m1/L)	5.05	5.07	5.18	5.97	6.37	6.54	6.33	10 to	, r	4.85	4.91	4.87	4.73	4.36	4.10	4.42	4.44	4.51	4.56	4.34	4.57	4.57	4.58
N(2)0	(n1/L)	265	251	252	250	269	283	243	251 251	307	330	299	308	309	290	235	311	310	301	311	238	349	342	3 32
н(2)	(n1/L)		33	37	19	19	17	σ ο	o c	, v	6	10	28	20	23	35	31	30	9	11	တ	14	12	11
CH (4)	(n1/L)	54	51	5.9	74	85	37	39	ر و د ای		95	75	91	67	52	50	4	43	29	26	28	24	24	23
Ne phe 1s	(arbit)	2997	3025	3110	3244	3278	3176	3054	29.71	2657	968T	1689	1579	1632	1695	1593	1433	1435	1395	1272	1373	1340	1341	1325
TSY	(ng/E)		57			26			400	200	26		18		20	32		21	15	11				
Sigma TSY	(ng/r)	25.34		25.36	25.53		27.29	27.65	23.05			28.81	7	28.95			29.05	23.05 21	29.04 15	29.03	29.03	29.01	29.00	29.00
	ــ ا ا	37.124 25.34	25.34			26.64	27	27	37.744 23.05 45	20.00	28.72		28.37		29.04	29.05								
S igma	(00/0)	•	37,117 25,34	37,127	37,180	.183 37.374 26.64	531 37,606. 27	540 37.550 27	23	7 999 38 077 28 53	8,100 38,147 28,72	8.171 38.227	8,225 38,263 28,37 1	8,374 38,438	3.537 38.547 29.04	3,475 33,243 29,05	3.419 33.490	8.427 33.474	8,406 38,455	8.397 38,456	8,396 33,443	8,336 38,452	8.333 38.472	8.386 38.473
u CFD Bottle Sigma	1915 Satin Satin Co. (0/00) (0/00)	.552 37.100	3.563 37.101 37.117 25.34	3.594 37.036 37.127	.083 37,124 37,180	9,204 37,183 37,374 26,64	7,714 37,531 37,606. 27	256 37,540 37,550 27	4.005 37.693 37.744 23	50.02 CC0.12 FC0.15 FC0	3.367 38.100 38.147 23.72	3,195 38,171 38,227	3,134 38,225 38,269 28.37 1	295 38.374 38.438	3,350 38,537 38,547 29,04	3,192 38,475 38,248 29,05	3,090 33,449 38,490	3.029 38.427 33.474	.001 38.406 38.455	.002 38.397 38.456	.020 38.396 38.443	.046 38.336 38.452	.073 38.333 38.472	.098 38.386 38.473
Insitu CFD Bottle Sigma	(deg 2) (deg 2) (0/00) (0/00)	23.552 37.100	23.563 37.101 37.117 25.34	23,594 37,036 37,127	23.083 37.124 37.180	19,204 37,183 37,374 26,64	17,714 37,531 37,606. 27	16.256 37.540 37.550 27	4.005 37.693 37.744 23	13 691 37 999 39 077 38 53	13,367 38,100 38,147 28,72	13,195 38,171 38,227	13,134 38,225 38,263 28,37 1	13,295 38,374 38,438	13,350 38,507 38,547 29,04	13,192 38,475 38,248 29,05	13,090 33,449 33,490	13.029 38.427 33.474	13,001 38,406 38,455	13.002 38.397 38.456	13,020 38,396 38,443	13.046 38.336 38.452	13.073 38.383 38.472	13.098 38.386 33.473

BARTLETT 1309-80 STN - Z

BARILET 1309-80 Stn 10

The state of the s

	Si2(4)	(ug4/L)	2.70	2.43	2.73	2.13	2.73	2.73	4.3	2.39	2.73	2.33	4. 00	4.73	5.0)	s.03	3.30	9.03	3.73	10.00	10.00	10.30	10.77	11.03	11.30	11.70	
	PO(4)	(ugA/L)	0.36	0.33		0.33	0.36	0.33	2.5	0.25	0.30	0.33	0.33	0.43	0.33	0.41	0.47	0.52	0.55	0.53	0.55	0.58	0.58	0.55	0.55	0.55	
	NH (4)	(µgA/L)	1.2	1.2	1.2	1.2	1.3	e.i.	F • 4	1.2	1.2	1.2	1.2	1:1	1.1	1.1	6.0	1.0	6.0	6.0	1.0	1.0	1.0	1.1	1.1	1.1	
	(Z)CN	(ugA/L)	0.14	0.18	0.17	61.0	0.17	0.17	91.0	0.16	0.16	0.25	0.14	0.15	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.13	0.14	0.14	91.0	
	(E)CN	(ugA/L)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.44	0.50	1.25	4.94	5.31	5.63	7.06	8.53	8.75	9.00	9.00	9.00	8.83	8.39	8.94	8.94	8.94	
	Pico	ng/L	4.25	5.57	6.53	5.40	5.06	4.74	5.14	5.52	3.32	3.01	1.59	3.77	1.56	1,35	2.45	1.00	2,45	2.37	2.29	0.74	1.24	1,12	1.60	1.33	
	Nano	ATE ng/L	5.53	4.92	3, 25	5.94	5,15	3.83	3.97	3,35	3.79	3.08	1.58	0.75				0.40	•			0.20	•			0.35	
2570m	Micro	Are n3/L	11.51	7.45	21.35	30.93	15.60	7.17	17.99	21.72	5.08	6,28	2.78	5.65)))			0.44	•			0.20				0.62	
SEPTH:	Total	ATP ng/L	21.29	17.94	31.70	42.27	25.81	15.75	27.10	31.19	12.20	12,33	5.95	10.17	5.91	3, 29	4.04	1,39	4.51	2.89	2.67	1.14	1.51	1.44	2.27	2.30	
ROTTOR	>20um	בי	0.014	0.000	0.007	0.000	0.001	0.005	0.000	000.0	000.0	0.020	0.029	0.005													
00.01%	>20um	Chloro ug/L	0.041	0.000	0.011	0.035	0.004	0.028	0.032	0.042	0.072	0.015	0.019	000													
36.93N;	< 20um	Phaeo u3/L	0.014	0.011	0.017	0.013	0.020	0.030	0.038	0.035	0.059	0.125	0.030	0.017	•												
POSITION:	< 20u m	Chloro ug/L	0.015	0.064	0.073	0.054	0.074	0.070	0.072	0.127	0.123	0.151	0.045	ננטיט	•												
	Total	Phaeo ug/L	0.028	0.017	0.024	0.025	0.021	0.035	0.032	0.058	0.056	0.145	950	000	1								•				
DATE: 09/10/80	Total	Chloro ug/L	0.056	0.047	0.035	0.039	0.078	0.093	0.134	0.170	201.0	0.175	0.064		***												
DAT	DEPTH	e)	4	13	21	22	27	34	8	CC	9	י מ	. 6	122	140	666	397	9 0	200	32.0	זוכו	1460	1694	7 6	2136	2287	

BHRTLETT 1309-BD STN I

BAKTLETT 1309-80 Stn 11

J	DATE	OATE: 09/11/80		POSITIOM:		36.10N;4.29W	HOY.TC	BOYTOM DEPTH:	1250			•	•	-
										•				
DEMH		Poten	Insitu	oro ci les	Bottle	Sigma	TSM.	Ne bhel s	CH(4)	H(2)	N(2)0	0(2)	ည္က	કુ
	(m) (3 e	(3 63 C)	(0 6a r)	"Ξ.	(0/0)		(7/6n)	(arbit)	(1/Tu)	(1/Tu)	(1/Tu)	(元/元)	(ngC/L)	(ngc/E)
	1 23	1.880	23.060	36.445	36.418	24.81		1626	61	34	259	5.66	31	677
7	11 21	21.646	21.646	36,311	36,355	25,32		2009	89	26	243		47	609
• •	21 19	4.635	19.663	36,309	36,327	25.85		2430	. 73	24	237	5.87	42	815
, 7	31 19	1.120	19.126	36.409	30.311	26.07		2354	74	9	304	5.72	7	, 625
1-1	39 17	. 866	17.873	36.294	36.300	26.30		2398	62	Ø,	305	5.45	27	594
	51 17	1.357	17.366	36.294	36.247	26.42		2093	61	12	336	5.24	16	728
9	54 16	1.426	16.637			26.55		1675	81	*	338	4.99	15	6 50
-	75 16	16.218	16.231	36	36.587	26.72		1198	78	S	328	5.07	σ,	616
51	98 15	1.245	15.261	36	36.916	27.10		1650	74	6	407	4.75	o	ສ ງ ວ
11	_	4.622	14.641	36	37.584	27.48		1493	. 75	11	433	4.47	22	582
E 4		4.029	14.050	37	38.133	28.07		2266	87	16	440	4.59	12	636
7	•	1.337	13.361	38	38.120	28.70		1523	69	1	. 432	4.61	18	528
		1.156	13.165	38	36.279	28.86		2719	73	8	391	4.4	_	342
23	-	1.175	13.219	38	-	29.00		2731	51	45	367	4.03	S	331
36	•	1.182	13.240	35	38.491	29.03		2569	41	22	332	4.05	9	322
\$ \$	490 13	13.108	13.181	36	38.494	29.04		2175	41	4	336	4.19	S	253
.6		.863	13.009	38	36.456	29.05		1750	42	ø	344	4.48	→	299
116		1.867	12.983	38	38.444	29.04		1889	43	S	358	4.51	7	414
120		.797	12.979	38	38.437	29.04		2223	46	91	360	4.47	▼	240
122		. 793	12.977	38	•	29.04		3060	28	9	395	4.42	7	. 546
1246		12.792	12.981	300	38.464	29.04		3315	21	'n	007	4.43	12	452
:														

BHRTLETT Z Н И

BOTTOM DEPTH: 1250

POSITION: 36.10N;4.29W

DATE: 09/11/80

810(4) ugA/L)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PO(4)	00000000000000000000000000000000000000
(ugA/L)	
NO(2)	00.15
(1/V6n)	00004404066666666666666666666666666666
Pico Arp ng/L	112.50 12.50 12.50 12.50 12.50 12.50 12.50 13.50 14.50 15.50 16.50
Nano ATP ng/L	10.05 10.05 10.09 10.09 10.09 10.09 10.09 10.09 10.09 10.09 10.09
Micro Arr ng/L	<u>.</u>
Fotal ATP ng/L	24.00
>20um Phaec ug/L	00000000000000000000000000000000000000
>20um Chloro ug/L	0.000000000000000000000000000000000000
<20um Phaeo ug/L	00000000000000000000000000000000000000
<20um Chloro uy/L	0.000000000000000000000000000000000000
fotal Pnaec ug/L	00000000000000000000000000000000000000
Total Chloro ug/L	60.00000000000000000000000000000000000
DLFTn (m)	1111 1112 1113 1113 1113 1113 1114 1115 1115 1115

BHRTLETT Z H IJ

BARTLETF 1309-80 Stn 12

BOTTOA DEPTH: 1400m

35.62N;7.7W

POSITION:

DATE: 09/13/80

CO	(ugc/L)	802	741	531	623	714	735	713	622	307	430	467	4 19	413	433	414	433	507	411	435	423	434	374	417
P32	(ugC/E)	50	19	27	25	32	34	16	24	, 60	15	13	6	10	12	16	10	6	7	13	10	11	17	12
0(2)	(m1/L)	δ.	5.12	5.56	5.32	5.95	6.11	6.11	6.33		5.27	5.25	5.20	5.07	4.87	4.73	4.19	4.16	4.25	4.47	4.55	4.53	4.59	4.64
N(2)0	(n1/E)	195	212	218	236	253	234	253	251	273	289	236	272	256	314	333	522	420	392	402	510	401	397	356
H(2)	(n1/L)	15	14	11	10	11	12	10	Ś	n es	, 74	'n	ស	٣	2	œ	12	15	œ	ø	11	7	4	9
CH (4)	(n1/L)	46	47	49	52	57	61	56	υ. Ο C	9 6	51	51	52	53	4 3	53	43	40	23	35	34	25	34	34
Nephels	(arbit)	2638	2668	2776	2303	2749	2853	2358	2949	2433	2240	1823	1520	1434	1424	1325	1269	1201	1196	1351	1432	1159	1331	1464
TSM	(ug/L)	27		33					26	0	56					11			11				18	22
Sigma	֧֧֧֖֖֖֖֖֖֖֖֖֖֖֓֞֝֝ ֓֞֞֞֞֞֞֞֞֓֞֞֞֓֞֞֞֞֓֓֞֞֞֞֓֓֓֞֞֡֓֡֓֞֡֓֡֡֡֡֡	24.99	5.0	25.47	25.72	25.98	26.03	26.29	26.44	ָר ע מיע	7	5.7	5.7		26.95	7.1	7.3	27.53	27.59	27.79	27.81	27.81	17.82	27.82
Sottle Sigma	<u>.</u> ו ו	602 24.9	595 25.0	549 2	470 2	463 25.9	453. 26.0	449 26.2	6.445 25.4	6.62 /UF	281 26.7	6,237 25.7	6.233 25.7	038 25.8	805 26.9	633 27.1	703 27.3	879 2	024 27.5	051 27.7	.931 2	~	.921	.870 2
Cro sottle	<u>.</u> ו ו	6.572 36.602 24.9	6.566 36.595 25.0	5.666 36.549 2	6.455 36.470 2	5.457 35.463 25.9	6.397 36.453. 26.0	5.425 36.449 26.2	.339 36.446 26.4	0.312 30.4J/ 20.5 6.346 36.366 26.6	6.292 36.281 26.7	5.232 36,237 25.7	5.212 35.233 25.7	6.032 36.038 25.8	5.769 35.805 26.9	5.597 35.633 27.1	5.670 35.703 27.3	5.836 35.979 2	5.979 36.024 27.5	5.998 35.051. 27.7	5.930 35.931 2	5.395 35.952 2	5.358 35.921	5.815 35.870 2
Cro sottle	0/00) (0/00)	36.572 36.602 24.9	36,566 36,595 25.0	35.666 36.549 2	36.456 36.470 2	35,457 35,463 25,9	35,397 35,453. 25.0	35.425 36.449 26.2	5.339 36.445 25.4	30.3/2 30.43/ 20.0 36.346 36.366 26.6	36.292 36.281 26.7	35.232 36,237 25.7	35.212 35.233 25.7	36,032 36,038 25,8	35.759 35.805 26.9	35.597 35.633 27.1	35.670 35.703 27.3	35.836 35.879 2	35.973 36.024 27.5	35,998 36,051. 27.7	35,930 35,931 3	35,395 35,952 2	35,358 35,921	35,815 35,870 2
Insitu Cro Bottle	c) (0/00) (0/00)	170 23.471 36.572 36.602 24.9	120 23,423 36,566 36,595 25.0	176 22,080 35,666 36,549 2	193 20,598 36,456 36,470 2	504 19,510 35,457 35,463 25,9	249 19,255 36,397 36,453, 26.0	303 18,316 35,425 36,449 26.2	36.339 36.445 26.4	121 10.932 30.372 30.407 20.3 115 16 623 36.346 36.366 26.6	183 16.199 36.292 36.281 26.7	320 15,340 35,232 36,237 25,7	100 15.724 35.212 35.233 25.7	117 14.547 36.032 36.038 25.3	096 13,133 35,769 35,805 26,9	170 11.635 35.597 35.633 27.1	788 10.977 35.670 35.703 27.3	319 10.431 35.836 35.979 2	144 10.130 35.978 36.024 27.5	109 9,557 35,998 36,051- 27.7	129 9.291 35.930 35.931 3	331 3.045 35,395 35,952 2	116 8,381 35,358 35,921	140 8.605 35.815 35.870 2

BHRTLETT 1309-80 STN - Z

The second secon

	3i3(4)	
	PO(4) (uga/L)	
	NH (4)	404400466424444444
	(2) CN (7) (ng A/L)	
	(1/46n)	00000000000000000000000000000000000000
	Pico ArP ng/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Nano ArP ng/L	C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
140 Jm	Micro ATP ng/L	0.00
BOFFOY DEPTH: 140 Jm	rotal ATP ng/L	2.05 2.05 3.05 4.05 6.53 2.39 6.53 2.05 2.05 2.05 2.05
BOLIO.	>20um Phaco ug/L	00000000000000000000000000000000000000
35.623;7.74	Chloro ug/L	0.0000000000000000000000000000000000000
	<20um Phaeo u3/L	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000
. *NCITISCA	<20um Chloro ug/L	00000000000000000000000000000000000000
	Total Phaeo ug/L	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
DATE: 09/13/80	Total Chloro	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
DAT	3EPTE (m)	112 122 223 333 333 344 121 13164 13364 13364 13364 13364 13364

BHRTLETT 1309-80

5TN - Z

DEPTH PROFILES OF DATA
USNS BARTLETT 1309-80

STATIONS 2 THROUGH 12

The second secon

DEPTH PROFILES OF NORMALIZED DATA

USNS BARTLETT 1309-80

STATIONS 2 THROUGH 12

DEPTH PROFILES OF NORMALIZED GRADIENTS USNS BARTLETT 1309-80

STATIONS 2 THROUGH 12

•

TREATHER . LEWIS TOWN

The state of the s

APPENDIX A: PROGRAM PARTICIPANTS

Name	Affiliation	Principal Responsibility
Reid, David F	NORDA	CTD/Nephelometry; Chief Scientist
ABD El-Reheim, Hussein	TAMU	Nutrients
Bodennec, Guy	Centre' Oceanologi- que de Bretagne (FRANCE)	Methane, Nitrous Oxide
Brooks, James M.	TAMU	Methane, Nitrous Oxide
DePalma, Irene P.	NORDA	TSM, Chlorophyll analysis, ATP analysis
Din, Zubir B.	TAMU	Chlorophyll sample preparation
Hayes, Joe D.	NORDA	POC/DOC laboratory analysis
Jeffrey, Alan	TAMU U	POC/DOC sample preparation
Jones, Mark M.	NRL	Hydrogen
Lavoie, Dennis M.	NORDA	ATP sample preparation
Scranton, Mary I.	S.U.N.Y, Stony Brook	Hydrogen
Spivak, Arthur J.	MIT	0xygen

In addition:

Schwarz, John R., Shropp, Steven J. and Cunningham, Bruce R. also participated on this cruise, performing culturing experiments to test for microbiological production of $\rm H_2$, $\rm CH_4$ and $\rm N_2O$. Their results will be reported else where.

APPENDIX B: COLLECTION AND ANALYTICAL METHODS

1. CH4 and N20

Care was taken to prevent the introduction or trapping of air in the collection bottle by filling the bottle from the bottom using a piece of plastic tubing fitted to the Niskin bottle drain cock, by allowing the filled bottle to overflow, and by capping the collection bottle carefully. Analysis was begun immediately using the method of Brooks, Reid, and Bernard (1981).

In its essentials, the method consists of first separating and concentrating the dissolved gases by bubbling pure helium through the sample in a closed purging loop. The purged gases are trapped in a tube containing a hydrocarbon adsorbant cooled by liquid nitrogen. Subsequently, the gases are released from the trap by heating and are flushed with helium through a gas chromatograph fitted with a flame ionization detector (for CH_4) or an electron capture detector (for N_2O). Calibration is accomplished using standard gas mixtures; precision of the method is approximately 5.5% and the detection limit 0.2 nl/l. Single analyses were done for each gas at each depth.

2. H₂

One liter samples were drawn into special collection containers so as to minimize contamination by air and analyzed within 24 hrs by the method of Schmidt and Seiler (1974) and as modified by Herr and Barger (1978). In its essentials, the method consists of vacuum stripping the H₂ from the seawater and injecting an aliquot of the extracted gas phase into a carrier gas stream that is fitted with scrubbers to remove interfering gases. H₂ then reduces HgO, releasing a proportional amount of Hg vapor which is measured with an atomic adsorption spectrophotometer. A standard gas mixture is injected after every sample. The limit of detection is 0.2 nl/L. The values reported are the average of duplicate determinations.

3. 02

Calibrated 125 ml glass flasks were rinsed twice with the seawater sample, then gently filled from the bottom using a short length of plastic tubing attached to the Niskin drain cock. After allowing the flask to overflow copiously, a glass stopper having a conical end to displace contaminating air bubbles was inserted.

A modified ("Micro") version of the standard Winkler titration was used to analyze for dissolved oxygen (Carpenter, 1965; U. S. Naval Oceanographic Office, 1970). Due to a procedural error, the results from stations \angle through 7 are unreliable and are not reported. The tabulated values are the average of duplicate determinations.

4. TSM

A separate hydrocast, consisting of twelve 30-liter Niskin bottles, was used to collect water for total suspended matter. These bottles were fitted with new rubber springs (to minimize the occurrence of rubber particles in the sample water) and with special taps threaded into the bottom edge to enable all the water to be drained. A short piece of plastic tubing connected each tap to a 47 mm diameter in-line filter holder (Nuclepore Corp., Pleasanton,

CA); this in turn was connected to a "catch" jug which was maintained under continuous vacuum. Each filter holder contained a tared 0.4 μm pore size Nuclepore filter.

Vacuum filtration of the seawater proceeded until either all the water was drained from the Niskin bottle or the filter clogged. Salt was removed from the filter by injecting 30 ml of filtered, distilled water into the filter holder and applying suction until the filter was dry. The filter was then placed in a 47 mm plastic culture dish (Millepore Corp., Bedford, MA), desiccated overnight, and sealed with tape. "Blank" filters were loaded, rinsed, unloaded and stored along with the test filters, but no seawater was passed through them. The volume of seawater passed through each filter was measured in the catch jugs using a calibrated dipstick. Loading and unloading of the filter membranes from the holders was done in a down-draft, laminar-air-flow hood.

At the laboratory, the filter membranes were weighed to the nearest microgram on a digital Cahn Electrobalance (Cahn Instrument Co., Cerritos, CA). Although they load up more quickly, Nuclepore filters are readily washed of salts and are not subject to the hydration problems associated with membrane filters or the fraying problems of glass fiber filters. The polycarbonate filters do tend to be prone to electrostatic effects, but this problem can be controlled by maintaining moderate humidity (approx. 70%) and using an ionization source in the weighing chamber. Single measurements were made at each depth.

5. Organic Carbon

Preparation of materials and analytical procedures generally followed those of Strickland and Parsons (1972) with some modifications. Calibrated 1 liter glass reagent bottles were rinsed and filled with the sample. Particulate and dissolved organic carbon fractions were obtained simultaneously with an in-line system: the sea water was drawn up a glass siphon tube placed in the sample bottle and through a precombusted 25 mm diameter glass-fiber filter (GF/C, Whatman Inc., Cliffton, NJ) mounted in a polycarbonate in-line holder (Nuclepore Corp.) attached to the top of the tube. The filtrate was then drawn into a 250 ml side arm flask from which it overflowed into the vacuum reservoir/waste receptacle. The filter was analyzed for particulate organic carbon (POC), and the filtrate remaining in the 250 ml flask was analyzed for dissolved organic carbon (DOC). Duplicate sample bottles were taken so that duplicate POC determinations could be made, and three replicate samples for DOC determinations were drawn by glass syringe from one of the 250 ml flasks. Reagents were added to the DOC ampules as per Strickland and Parsons (1972). but for the POC ampules, the glass-distilled water, persulfate and acid were premixed 8 hours before use for convenience and to minimize the reagent blank. This reagent solution was dispensed using an all-glass and Teflon Repipettor (Oxford Instruments Inc., Columbia, MD). The ampules were sealed using an Oceanography International Corporation (OIC, College Station, TX) Sealing/Purging Unit and were packed for transport.

At the laboratory, the ampules were cooked at 100°C overnight to complete digestion of the organic material to CO2 and analyzed by infrared adsorption on an OIC Carbon Analyzer. Standards were run at the beginning and end of each sample set using oxalic acid dilutions prepared in ampules. The standard curve was best fitted by a quadratic equation to account for nonlinearity at the low

end of the range of concentrations encountered. Blanks on standards and samples were run according to Strickland and Parsons (1972).

On shipboard, the processing of filters and ampules was done in a down-draft, laminar-air-flow hood to minimize contamination.

6. Chlorophyll and Phaeopigment

Pigment samples were drawn into rinsed, calibrated 1 liter, brown plastic bottles, and filtered and stored according to Strickland and Parsons (1972). Duplicate samples of the total phytoplankton pigment were filtered at each depth. In addition, a second set of duplicates was prepared by passing the seawater through a 20 μm mesh nylon screen before filtering onto the glass fiber filter. Thus, two fractions, a "total" and a "< 20 μm ", were obtained which, by difference, yielded the "> 20 μm " component.

The filters, stored at -20°C in a desiccator, were transported to the laboratory at the end of the cruise, and the pigments extracted by grinding and steeping in neutral 90% acetone approximately 4 to 6 hours. Chlorophyll "a" and phaeopigment "a" were measured after Strickland and Parsons (1972) using a Turner Designs Model 000-10 Fluorometer (Turner Designs, Mountain View, CA).

7. ATP

Seawater was drained through a 200 μm mesh nylon screen into rinsed brown plastic, 500 ml bottles, two bottles for each depth. The contents of one bottle were passed through 20 μm mesh nylon screen onto a 2 μm pore size Nuclepore filter to obtain particles between 20 and 2 μm . The contents of the other bottle were passed through a 2 μm filter without prefiltering through the nylon mesh to yield particles between 200 and 2 μm . This filtrate was caught in a clean flask below and was in turn passed through a 0.2 μm filter to yield a 2 to 0.2 μm fraction. Since each sample bottle was actually split into two 250 ml aliquots, the resulting sample set comprised duplicate filtrations of each of the three size fractions at each depth.

ATP values for two other size fractions were obtained by adding the results of the 200 to 2 μm fraction and the 2 to 0.2 μm fractions to yield a "total" ATP (200 to 0.2 μm) and by subtracting the results of the 20 to 2 μm from the 200 to 2 μm fraction to yield the 200 to 20 μm fraction. The names assigned to the different fractions --- "micro" for 200 to 20 μm , "nano" for 20 to 2 μm , and "pico" for 2 to 0.2 μm --- follow the eminently logical terminology proposed by Sieburth, Smetacek, and Lenz (1978) and correspond to the traditional approximate terms "net plankton", "ultra" or "nano" plankton (mostly flagellates), and "bacterioplankton".

ATP was extracted from the particles on the filters by the standard method (Holm-Hansen and Booth, 1966): as soon as the last of the seawater passed through it, the filter was removed from the filter holder and plunged into 5 ml of boiling Tris buffer (tris hydroxyaminomethane at pH 7.8, 0.05 M) contained in a 20 ml scintillation vial and boiled for at least 3 minutes. Procedural blanks were obtained by extracting filters taken straight from the box.

The extracts and filters were cooled and frozen in the vials and maintained at -20°C until analysis at the laboratory, where they were gently thawed and brought to the original 5 ml volume with "low response" water (i.e., water purified by ion exchange and reverse osmosis, neutralized with NaOH, and tested for ATP activity). Analysis was accomplished by injecting 200 μl of sample into 100 μl of purified luciferin-luciferace system (DuPont Inc., Wilmington, DL). The resulting light emission was measured in a sensitive photometer (SAI Inc., San Diego, CA), after a 10-second delay, by integrating the area under the reaction decay curve for 30 seconds. From two to four injections were made of each extract, so that each data point represents a minimum of duplicate determinations on each of two replicate filtration/extractions. Standards were made with "low response" water and pure Na-ATP salt (Sigma Chem. Corp., St. Louis, MO). Both blank and unknown concentrations were normalized to 5 ml before correcting for the blank and extrapolating back to the seawater concentration.

8. Nutrients

Samples were drawn into sterile Whirl Pak plastic bags (NASCO, Inc.) and kept at 4°C until processing, which was completed within six hours. Sample preparation followed Strickland and Parsons (1972) and analysis was performed using a Technicon Auto Analyzer (Technicon Instruments Corp., Tarrytown, NY).

9. Light Field

The depth of the 1% light level on stations 3, 6, 8, 9, and 12 was located by hand-lowering a light sensor off the sunny side of the ship. The sensor (LI-COR, Lincoln, NB) was an upward-looking, cosine-corrected type, sensitive to photosynthetically active radiation, and its output was integrated over 10-second intervals by a LI-COR quantum radiometer and normalized to the reading obtained simultaneously from an on-deck sensor.

References:

- Brooks, J. M., D. F. Reid, and B. B. Bernard (1981). Methane in the Upper Water Column of the Northwestern Gulf of Mexico. <u>In press</u>, J. Geophys. Res.
- Bryden, H. L. (1973). New Polynomials for Thermal Expansion, Adiabatic Temperature Gradient and Potential Temperature of Sea Water. Deep Sea Res., 20: 401-408.
- Carpenter, J. H. (1965). The Accuracy of the Winkler Method for Dissolved Oxygen Analysis. Limnol. Oceanog., 10: 135-140.
- Herr, F. L. and W. R. Barger (1978). Molecular Hydrogen in the Near-Surface Atmosphere and Dissolved in Waters of the Tropical North Atlantic. J. of Geophys. Res., 83(C12): 6199-6205.
- Holm-Hansen, O., and C. R. Booth (1966). The Measurement of Adenosine Triphosphate in the Ocean and Its Ecological Significance. Limnol. Oceanog., 11: 510-519.
- Mayoral, C.R., 1979. A discussion of salinity computations as used by the Southeast Regional Calibration Laboratory of the Naval Oceanographic Office. U.S. Naval Oceanographic Office Technical Note TN 6300-2-79.
- Millero, F. J., C. T. Chen, A. Bradsh, and K. Scheicher (1980). A New High Pressure Equation of State for Seawater. Deep-Sea Res., 27A: 255-264.
- Saunders, Peter M. (1981). Practical Conversion of Pressure to Depth, 1981. J. of Phys. Ocean., 11: 573-574.
- Schmidt, U. and W. Seiler (1974). Dissolved Nonconservative Gases in Seawater. <u>In</u>: The Sea, Vol. 5 (E. D. Goldberg, ed.), John Wiley, NY, p. 219.
- Sieburth, J. McN, V. Smetacek, and J. Lenz (1979). Pelagic Ecosystem Structure: Heterotrophic Components of the Plankton and Their Relationship to Plankton Size-fractions. Limnol. Oceanog., 23: 1256-1263.
- Strickland, J. D. H. and T. R. Parsons (1972). A Practical Handbook of Seawater Analysis, Bulletin 167 (second edition), Fisheries Research Board of Canada, Ottawa.
- U. S. Naval Oceanographic Office (1970). Instruction Manual for Obtaining Oceanographic Data. 3rd Edition. Pub. No. 607.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
NORDA Technical Note 138 2. GOVT ACCESSION NO. AD-A/14 C89	3. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
Chemical, Biological, and Physical Measurements from the Mediterranean Sea, Summer 1980			
from the mediterranean Sea, Summer 1980	6 PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(*)	B. CONTRACT OR GRANT NUMBER(a)		
D.M. Lavoie D.F. Reid I.P. DePalma J.D. Hayes			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Naval Ocean Research and Development Activity Code 334			
NSTL Station, Mississippi 39529	12. REPORT DATE		
Naval Ocean Research and Development Activity	January 1982		
Code 334	13. NUMBER OF PAGES		
NSTL Station, Mississippi 39529 14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)		
	UNCLASSIFIED		
	15. DECLASSIFICATION DOWNGRADING		
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>		
Distribution Unlimited	1		
Distribution Unlimited			
	·		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	on Report)		
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identity by block number))		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
This report is a summary of data collected in the Mediterranean Sea during the late summer of 1980. Vertical profiles through most of the water column were			
obtained for the following parameters: conductivity, temperature, salinity,			
nephelometry, total suspended matter, dissolved and particulate organic carbon.			
adenosine triphosphate (ATP), chlorophyll and phaeopigments, nutrients (nitrate, ammonium, phosphate, silicate), dissolved oxygen and dissolved reduced			
gases (methane, hydrogem, nitrous oxide). Results are presented as: (1) tables			

UNCLASSIFIED

The second secon

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)		
of measured and derived parameters; (2) depth profiles of unnormalized values, normalized values, and normalized rates of change. Descriptions of the collection and analytical procedures are also given.		

UNCLASSIFIED

END

DATE
FILMED

DTIC